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An efficient synthesis of tetracyclic uracil derivatives (polycyclic pyrans) is achieved via domino Knoeve-
nagel-hetero-Diels–Alder reactions of O-propargylated salicylaldehyde derivatives with 1,3-dimethyl-
barbituric acid in water as solvent in the presence of CuI. The products are formed in good yields.

� 2008 Elsevier Ltd. All rights reserved.
Modern research in organic chemistry requires the synthesis of
complex organic molecules and emphasis on methods that provide
maximum synthetic efficiency. Combinatorial chemistry has
emerged as a powerful synthetic procedure in this area. Domino
reactions which result from the combination of multiple transfor-
mations in a single pot are highly efficient means for the improve-
ment of reaction efficiency.1 Among these reactions, the domino
Knoevenagel-hetero-Diels–Alder reaction, which was developed
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Scheme 1. Retrosyn
widely by Tietze and Rackelman2 is a very efficient process in or-
ganic synthesis, especially in the area of heterocycles and natural
products.

For a long time, the use of alkynes in hetero-Diels–Alder reac-
tions was limited, because of the lower reactivity of unactivated al-
kynes compared to the corresponding alkenes. The use of different
Lewis acids3 provides new opportunities for various catalytic al-
kyne reactions. The development of copper catalysis for synthetic
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Table 1
Effect of catalyst and solvent on the domino Knoevenagel-hetero-Diels–Alder
reactionsa of 1 and 2a

Lewis acid Solvent Yield (%)

— Acetonitrile —
AgOAc (20%) Acetonitrile —
AgOTf (20%) Acetonitrile —
AuCl3 (20%) Acetonitrile —
CuI (20%) Acetonitrile 10
CuI (20%) Water 50
CuI (30%) Water 67
CuI (40%) Water 75

a Reaction time was 24 h.

Table 2
CuI-catalyzed domino Knoevenagel-hetero-Diels–Alder reaction of 2a–d and 1a
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a Reactions were performed with aldehydes 2a–d (1 mmol), 1,3-dimethylbarbituric a
b Yield of isolated product.
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reactions, particularly for alkyne transformations, has gained
increasing attention. Copper(I) compounds are powerful catalysts
that promote a wide variety of organic transformations such as
intramolecular cyclization,4 halogen exchange,5 [3+2] cycloaddi-
tion,6 and coupling reactions.7

Our goal was to design an efficient method to prepare the tetra-
cyclic systems 3, which consist of a uracil ring (A) annulated to a
dihydropyran ring (B) (Scheme 1). It is highly desirable to develop
environmentally benign processes that can be conducted in aque-
ous media. Furthermore, using water as a solvent has advantages,
such as low cost, safety, and it is environmentally friendly.8 Tetra-
cyclic uracil derivatives have various biological activities. Herein,
N
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X

H2O, reflux

3a-d

Time (h) Yieldb (%)

24 75

25 73

6 85

10 80

cid (1.2 mmol), and CuI (40 mol %) in water (25 ml) under reflux conditions.



M. J. Khoshkholgh et al. / Tetrahedron Letters 49 (2008) 6965–6968 6967
we report the first domino intramolecular Knoevenagel-hetero-
Diels–Alder reaction of O-propargylated salicylaldehydes with
terminal unactivated acetylenes in the presence of CuI in aqueous
media. A retrosynthetic analysis of 3 (Scheme 1) led to alkyne 4,
which is easily accessible via a Knoevenagel reaction of propargy-
lated salicylaldehyde derivatives 2 with 1,3-dimethylbarbituric
acid.

The O-propargylated salicylaldehyde derivatives 2a–d were
prepared in high yields and excellent purity from the reaction of
substituted salicylaldehydes and propargyl bromide using potas-
sium carbonate in DMF.9

Compound 2a was used as a model system to achieve and opti-
mize the desired domino intramolecular Knoevenagel-hetero-
Diels–Alder reaction to give 3a. Heating 2a in acetonitrile under
reflux conditions for 24 h did not lead to the anticipated product.
Thus, the effect of various Lewis acids was studied. Using AgOTf,
AgOAc, AuCl3, and CuOTf as catalysts did not give the desired prod-
uct. When CuI was employed as the catalyst, the desired product
Figure 1. ORTEP representation of the structure of 3d.
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Scheme 2. A plausible mechanism for the form
3a was formed in 10% yield. After investigation of the amount of
catalyst and solvent, CuI (40%) and water as solvent gave the best
results (Table 1).

Using these optimized conditions, the annulated uracils 3a–d
were synthesized in yields ranging between 73% and 85% (Table 2).

The structures of the products were deduced from their
elemental analyses and spectroscopic data.10 Characteristic sig-
nals for uracils 3a–d in the 1H NMR spectra are an AB quartet for
the –OCH2 group between 4.60 and 4.90 ppm and a singlet due
to the O–CH@ group at 6.65–7.18 ppm. The corresponding signals
of the O–CH2 and O–CH@ groups in the 13C NMR spectra appear at
65.3–67.6 ppm and 84.5–85.7 ppm, respectively. X-ray crystallog-
raphy data also confirmed the structure of 3d11 (Fig. 1).

The shape of 3d was confirmed by X-ray crystallography. The
angle between the two planes is 60.7� (i.e., the angle between
the planes C(8)–N(7)–C(6)–C(5)–C(10)–N(9) and C(3)–C(18)–
C(17)–C(16)–C(15)–C(2)).

A possible mechanism for the domino intramolecular Knoeven-
agel-hetero-Diels–Alder reaction is shown in Scheme 2. The initial
step is a Knoevenagel condensation between 1,3-dimethylbarbi-
turic acid and the aldehyde 2a–d. Next, the triple bond is activated
with CuI through formation of a p-complex or a copper acetylide,
which reduces the electron density of the alkyne12 and provides
the necessary conditions for the hetero-Diels–Alder reaction.

Copper acetylide is usually formed in the presence of a strong
base. The product of the Knoevenagel condensation of 2a with
1,3-dimethylbarbituric acid could be isolated. The hetero-Diels–
Alder reaction of this product was performed under reflux
conditions in the presence of CuI (20%) in acetonitrile as solvent
without additional base. The desired product 3a was formed in
45% yield under these conditions, therefore, the formation of a
copper acetylide is possible.

In conclusion, we have developed a CuI-catalyzed domino
intramolecular Knoevenagel-hetero-Diels–Alder reaction, which
provided an efficient route for the formation of tetracyclic uracil
derivatives. Further studies to extend the scope and synthetic
utility of this Cu-catalyzed domino intramolecular Knoevenagel-
hetero-Diels–Alder reaction with inactivated terminal acetylenes
are in progress in our laboratory.
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